The Biochemical Cascades of the Human Pancreatic β-Cells: The Role of MicroRNAs.
نویسندگان
چکیده
Diabetes mellitus is a disease that poses a burden to the health care system due to its prevalence and chronic nature. Understanding β cell pathophysiology may lead to future therapeutic options for diabetes mellitus type 1 and 2. MicroRNAs (MiR) fine-tune β cell biochemical cascades through specific protein targets. This review argues that miRs may play a critical role in human islet β cell biology and are potential candidates for a new pharmacological strategy. We have reviewed and presented how miRs fine tune four biochemical cascades in islet β cells: glucose stimulated insulin secretion, β cell replication, apoptosis, and development. Only studies that examine human pancreatic islets either in vitro or in vivo are included. The unveiling role of miR pathways in regulating human islet β cell biology could open the door for diagnostic and therapeutic methods for diabetes mellitus prevention and therapy.
منابع مشابه
Calotropis procera Root Extract\'s Anti-diabetic and Hepatoprotective Therapeutic Activity in Alloxan-Induced Pancreatic Toxicity in Wistar Rats
Background: Studies suggest that herbal remedies may serve as functional anti-diabetic agents. This study investigated the therapeutic role of Calotropis procera aqueous-methanol root extract in hyperglycaemic and hepatopathy disorders in Wistar rats after exposure to alloxan. This compound destroys pancreatic β-cells and produce diabetes in experimental animals. Methods: Spectrophotometric m...
متن کاملmiR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting
Objective(s): MicroRNAs (miRNAs) are considered as powerful, post-transcriptional regulators of gene expression in hepatocellular carcinoma cells (HCC). However, the function of miR-92a is still unclear in HCC. Materials and Methods: Expression of miR-92a in human HCC cell lines was evaluated using qRT-PCR. MTT assay and transwell assay were used to examine the function of miR-92a in HepG2 and ...
متن کاملتمایز بنیاختههای جنینی انسان به سلولهای مولد انسولین
Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated se...
متن کاملبررسی القای تمایز سلولهای بنیادی به سلولهای بتای پانکراس بهوسیله عصاره متانولی یونجه
Background and Objective: β cell replacement therapy by pancreatic islet transplantation has become a promising treatment for type 1 diabetes. Medicago sativa L (Lucerne) from leguminosae family is known to exhibit hypoglycaemic activity both in animal and human studies. Most of these studies were concentrated on the effects of plant extracts on fasting glucose levels. Until now no researches h...
متن کاملSalvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling
Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bioanalysis & biomedicine
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2015